Potential CDM Project for a Landfill in Egypt Application of the Approved Methodology AM002

Amr Abdel-Aziz, Ph.D. Nexant, Inc.

Baseline & PDD Preparation

UNEP RISO / APEX

Background

Baseline & PDD Preparation

Potential Project in Egypt

Landfill serves 4 districts in Greater Cairo

Annual MSW approximately 400,000 t/yr

 Contract between Egyptian government and an international company for the collection and final disposal of SW

Contract Duration = 15 years

Baseline & PDD Preparation

Approved Baseline Methodology

- Applicability
- Emission Reduction
- Baseline
- Additionality
- Leakage

Baseline & PDD Preparation

Applicability

 There exists a contractual agreement where the operator is responsible for all aspects of the landfill

Contract awarded through competitive bidding

 Contract stipulates amount of landfill gas to be flared → performance among top 20% in the previous 5 years

 No generation of electricity using captured methane occurs or planned

Baseline & PDD Preparation

UNEP RISO / APEX

Applicability – Egyptian Landfill

- Contractor responsible for all aspects of the landfill
- Contract awarded through competitive bidding
- A passive collection system is proposed by the contractor → Quantity of LFG can be estimated. The contract mandates flaring if CH₄ generation rate is greater than 20 m³/hr
- Only 2 governorates out of 26 use controlled landfills, others use open dumping. CH₄ recovery system pilot projects are being implemented
- No electricity generation is planned

Baseline & PDD Preparation

Emission Reduction

 $ER_CH4_y = CH4_{flared,y} - CH4_{baseline,y}$

 $ER_{y} = ER_{CH4_{y}} * CF * GWP_{CH4}$

ER_y: ER_CH4_y: CF: GWP_CH4: GHG reduction in t CO_{2e} Methane emission reduction in m³ 0.000662 t $CH_4/m^3 CH_4$ 21 (Global warming potential for CH_4)

Baseline & PDD Preparation

Emission Reduction – Egyptian Landfill

Baseline & PDD Preparation

Baseline

- First order decay model
- Applied to a single batch (either a layer or a year), then results are summed for all batches

$$CH4_{\text{projected},y} = k * L_o * \sum_{t=0 \text{ to } y} Waste_{\text{contract},t} * e^{t}$$

CH4
projected,y:
K:
L_o:Methane projected to be generated during a given year
Decay rate
m³ CH4 / t MSW
Waste projected to be lanfilled at year t

-k(y-t)

Tunis, March 18-20, 2004

Baseline & PDD Preparation

Baseline

 K depends on local conditions e.g. temp., moisture content of MSW, pH, and nutrients.

• L_o (m³ CH₄ / t MSW)

 $L_o = MCF*DOC*DOC_f*F*\frac{16}{12}$

- **MCF** Methane correction factor
- **DOC** Degradable organic carbon
- **DOC_f** Fraction of organic carbon converted to landfill gas
- **F** Fraction of CH_4 in landfill gas (Default = 0.5)

Baseline

$$L_{o} = MCF * DOC * DOC_{f} * F * \frac{16}{12}$$

Methane correction factor (MCF)

- Managed landfills
- 0.8 Unmanaged landfills (d>5)
- 0.4 Unmanaged landfills (d<5)</p>
- 0.6 Unknown quantity of disposed MSW

 Factors reflect lower methane generating potential for unmanaged sites (less favorable conditions for anaerobic decomposition)

Baseline & PDD Preparation

TIMS/EEAA

UNEP RISO / APEX

Baseline

Baseline & PDD Preparation

Baseline $L_{o} = MCF * DOC * DOC_{f} * F * \frac{16}{12}$

Fraction of carbon converted to LFG (DOC_f)
 – Function of temperature in anaerobic zone

$DOC_{f} = 0.014T + 0.28$

- T is usually assumed 35° in anaerobic zone \rightarrow DOC_f = 0.77

Baseline & PDD Preparation

UNEP RISO / APEX

Baseline & PDD Preparation

TIMS/EEAA

UNEP RISO / APEX

Baseline – Egyptian Landfill

	2% annual increase					
Yr	2003	2004	2005	2006		2018
MSW (t)	395,660	403,573	411,645	419,878		532,506
CH4 (m3/yr) from waste in 2003	8,445,125	7,490,154	6,643,171	5,891,964		1,395,970
CH4 (m3/yr) from waste in 2004		8,614,028	7,639,957	6,776,034		1,605,431
CH4 (m3/yr) from waste in 2005			8,786,308	7,792,756		1,846,320
CH4 (m3/yr) from waste in 2006				8,962,035		2,123,355
CH4 (m3/yr) from waste in 2018						11,366,027
Total CH4 (m3)	8,445,125	16,104,182	23,069,437	29,422,789		77,812,347
Baseline Flared (m3 CH4)	1,689,025	3,220,836	4,613,887	5,884,558		15,562,469
Project Flared (m3 CH4)	6,756,100	12,883,346	18,455,549	23,538,231		62,249,877
Emission Reduction (m3 CH4)	5,067,075	9,662,509	13,841,662	17,653,674		46,687,408
	0.054	0.007	0.100	11.007		00.007
Emission Reduciton (t CH4)	3,354	6,397	9,163	11,687		30,907
Emission Reduction (t CO2a)	70 442	12/ 220	102 427	245 421		640.049
Emission Reduction (t CO2e)	10,442	134,320	192,427	240,421		049,040

Baseline & PDD Preparation

Baseline – Egyptian Landfill

Baseline & PDD Preparation

Additionality

 Emission reductions that are additional to any that would occur in the absence of the project

• How to demonstrate:

 Qualitative or quantitative assessment of one or more barriers facing proposed project

Additionality – Egyptian Landfill

 Contract approves passive collection system – Contractor will not spend money on increasing efficiency of collection

 Most economic course of action is the baseline (current approved passive collection system)

 Active collection system is not common practice in Egypt and is not required by legislation

Baseline & PDD Preparation

Additionality -- Egyptian Landfill Baseline

Passive venting system
 Flaring if CH₄ rate > 20 m³/hr
 20% collection efficiency

Baseline & PDD Preparation

TIMS/EEAA CD4CDM- Second Regional Workshop (Phase II) UNEP RISO / APEX

Additionality -- Egyptian Landfill Project

Active collection system (suction
Collected gas flared
80% collection efficiency

Tunis, March 18-20, 2004

Baseline & PDD Preparation

Leakage

 Emissions resulting from generating electricity used to pump the landfill gas in the additional collection equipment

$$EE_{y} = \left[\frac{CH4_{flared,y} - CH4_{baseline,y}}{CH4_{baseline,y}}\right] * \frac{EP_{y} * EC_{y}}{1000}$$

- **EE_v Electricity emissions (t CO2/yr)**
- **EC_v Emission factor (kg CO2 / Kwh)**
- **EP_v Electricity consumption (Kwh/yr)**

Approved Monitoring Methodology

Applicability

- Project activities that reduce green house emissions through landfill gas capture and flaring
- Baseline established by a public concession contract

Approved Monitoring Methodology Monitoring emissions from project activity

- Measured
 - LFG (c)
 - % CH4 in LFG (c)
 - Temp. (c)
 - Pressure (c)
 - SW disposed (d)
- Calculated

- Amount of methane flaring for baseline (a)
- Amount of methane collected in addition to baseline (a)
- CO_{2e} reduced (a)

a annual, d daily, c continuous

Baseline & PDD Preparation

Approved Monitoring Methodology

Monitoring Leakage

– Measured

 Continuous monitoring of total electricity used to pump gas (kWh)

– Calculated

Emissions factor (CO₂ / kWh)

Approved Monitoring Methodology

Quality Control / Quality Assurance Procedures

Procedure for equipment calibration

- ISO 9000/14000 certification